Id2 promotes tumor cell migration and invasion through transcriptional repression of semaphorin 3F.
نویسندگان
چکیده
Id proteins (Id1 to Id4) are helix-loop-helix transcription factors that promote metastasis. It was found that Semaphorin 3F (SEMA3F), a potent inhibitor of metastasis, was repressed by Id2. High metastatic human tumor cell lines had relatively high amounts of Id2 and low SEMA3F levels compared with their low metastatic counterparts. No correlation between metastatic potential and expression of the other Id family members was observed. Furthermore, ectopic expression of Id2 in low metastatic tumor cells downregulated SEMA3F and, as a consequence, enhanced their ability to migrate and invade, two requisite steps of metastasis in vivo. Id2 overexpression was driven by the c-myc oncoprotein. SEMA3F was a direct target gene of the E47/Id2 pathway. Two E-box sites, which bind E protein transcription factors including E47, were identified in the promoter region of the SEMA3F gene. E47 directly activated SEMA3F promoter activity and expression and promoted SEMA3F biological activities, including filamentous actin depolymerization, inactivation of RhoA, and inhibition of cell migration. Silencing of SEMA3F inhibited the E47-induced SEMA3F expression and biological activities, confirming that these E47-induced effects were SEMA3F dependent. E47 did not induce expression of the other members of the SEMA3 family. Id2, a dominant-negative inhibitor of E proteins, abrogated the E47-induced SEMA3F expression and biological activities. Thus, high metastatic tumor cells overexpress c-myc, leading to upregulation of Id2 expression; the aberrantly elevated amount of Id2 represses SEMA3F expression and, as a consequence, enhances the ability of tumor cells to migrate and invade.
منابع مشابه
miR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting
Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...
متن کاملSemaphorin-3F functions as a tumor suppressor in colorectal cancer due to regulation by DNA methylation.
Semaphorin-3F (SEMA3F) is a member of the class III semaphorin family, and is seen as a candidate tumor suppressor gene. The aims of this study were to evaluate the effect of SEMA3F in colorectal cancer (CRC) patients, and to explore the mechanism for that SEMA3F suppresses tumor progression and metastasis. The expression levels of SEMA3F in the colorectal cancer tissues and corresponding non-t...
متن کاملLoss of ZBRK1 Contributes to the Increase of KAP1 and Promotes KAP1-Mediated Metastasis and Invasion in Cervical Cancer
ZBRK1, a zinc finger protein that interacts with breast cancer 1 (BRCA1) and KRAB-ZFP-associated protein 1 (KAP1), has been suggested to serve as a tumor suppressor via repression of tumor metastasis/invasion. To date, the detailed molecular mechanisms for how BRCA1 and KAP1 participate in ZBRK1-mediated transcriptional repression, metastasis and invasion as well as the associated clinical rele...
متن کاملSemaphorins in cancer.
The semaphorins are the products of a large family of genes currently containing more than 30 members. These genes are divided into eight classes of which classes 1, 2 and 8 contain invertebrate and viral semaphorins, while classes 3-7 contain the vertebrate semaphorins. The semaphorins have been implicated in diverse developmental processes such as axon guidance during nervous system developme...
متن کاملFOXD3 modulates migration through direct transcriptional repression of TWIST1 in melanoma.
UNLABELLED The neural crest is a multipotent, highly migratory cell population that gives rise to diverse cell types, including melanocytes. Factors regulating the development of the neural crest and emigration of its cells are likely to influence melanoma metastasis. The transcription factor FOXD3 plays an essential role in premigratory neural crest development and has been implicated in melan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 70 9 شماره
صفحات -
تاریخ انتشار 2010